An Empirical Study of the Probability Density Function of Hf Noise

نویسندگان

  • J. GIESBRECHT
  • R. CLARKE
  • Guglielmo Marconi
  • D. Abbott
چکیده

To many, high-frequency (HF) radio communications is obsolete in this age of longdistance satellite communications and undersea optical fiber. Yet despite this, the HF band is used by defense agencies for backup communications and spectrum surveillance, and is monitored by spectrum management organizations to enforce licensing. Such activity usually requires systems capable of locating distant transmitters, separating valid signals from interference and noise, and recognizing signal modulation. Our research targets the latter issue. The ultimate aim is to develop robust algorithms for automatic modulation recognition of real HF signals. By real, we mean signals propagating by multiple ionospheric modes with co-channel signals and non-Gaussian noise. However, many researchers adopt Gaussian noise for their modulation recognition algorithms for the sake of convenience at the cost of accuracy. Furthermore, literature describing the probability density function (PDF) of HF noise does not abound. So we describe a simple empirical technique, not found in the literature, that supports our work by showing that the probability density function (PDF) for HF noise is generally not Gaussian. In fact, the probability density function varies with the time of day, electro-magnetic environment, and state of the ionosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new probability density function in earthquake occurrences

Although knowing the time of the occurrence of the earthquakes is vital and helpful, unfortunately it is still unpredictable. By the way there is an urgent need to find a method to foresee this catastrophic event. There are a lot of methods for forecasting the time of earthquake occurrence. Another method for predicting that is to know probability density function of time interval between earth...

متن کامل

Transient Nonlinear Vibration of Randomly Excited Cylindrical Shallow Panels in Non Aging Viscous Medium

In this paper, the nonlinear transient vibration of a cylindrical shallow panel under lateral white noise excitation is studied. The panel is in contact with a non aging viscoelastic medium. Since the external load is a time varying random wide band process, deterministic and conventional approaches cannot be used. Instead, the evolution of the probability density function of the response is in...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

A Bayesian approach for image denoising in MRI

Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...

متن کامل

Noise pollution analysis in Tehran cement plant

  Background : Cement industry has many process units. Basically all of these units can be considered as a source of noise. Since noise pollution is defined based on its offensive hearing effects, the importance of the noise sources depends directly on the number of workers in the unit.   Materials and Methods : An experimental study has been done at Tehran cement factory to recogn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006